If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5w^2+3w-10=0
a = 5; b = 3; c = -10;
Δ = b2-4ac
Δ = 32-4·5·(-10)
Δ = 209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{209}}{2*5}=\frac{-3-\sqrt{209}}{10} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{209}}{2*5}=\frac{-3+\sqrt{209}}{10} $
| 8x-16=4(x+3) | | -13=2=5x | | 3/x=2x-45 | | y=2(1+1/3)-3 | | x+(2x-1)=3 | | 7x^2(3x-4)+4x=43 | | 4x+7x2(3x-4)=43 | | 33=3x^2-4x | | 10x+4=8x-2 | | 10(x+4)=8(x-2) | | (x.0.5)+(x.0.57)-3.30=0 | | 6y+¾=5y+2 | | 16z^2-8z=3 | | x+x(1/2x+10)=180 | | 0.4y+0.1(10000-y)=0.44y | | 2/5+t=9 | | 13x-1=169 | | 2x+3x+2x+1=21 | | m*5/6=4 | | 22+2x=10 | | 6x+x^2-374=0 | | 4x+7=3(2x−5) | | 3(r+-1)=18 | | A=3.14x2^2 | | 16^x+1=64^x | | ƒ(x)=8(x-4)-18 | | 7b-3=52 | | -7(2x-3=7 | | 4.6=1.8-0.5y | | 58+22=x | | A+B+(1/2x+10)=180 | | (w+3)^2=2w^2+17w+37 |